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Abstract:. Fatigue damage estimation using neural networks is described in the paper.

Attention is focused on the method of data generation for both the training and test

data used by radial basis function (RBF), back-propagation, and CID4 algorithm used

in this study. The performance results of the three neural algorithms are analyzed in

terms of their strengths and weaknesses in training.
/
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INTRODUCTION

Machines and structures fabricated from engineering materials undergo cyclic loading which

results in failure due to metal fatigue. In such situtafions, it is often necessary to estimate the

service life of the critical components of such systems, either for design purposes or to aid in

the troubleshooting of service failures. Unfortunately, practical situations require the

handling of complex geometric shapes and irregularly cycled loadings. One approach to such

problems is to base life calculations on the stresses and strains that occur to the most highly

stressed areas of the structure, which for argument's sake can be considered a notch.

could be done in the laboratory with typical load sequences that the structure may

encounter during actual usage, or it may be done real-time [1].

It is beyond tSe scope of this paper to describe the details of fatigue life prediction based on

cycled stresses and strains. Rather, the reader is directed to Lorenzo and Saus [2] for this

information. It is sufficient to state that cycle life prediction calculations are based on the

extrema stress and strain values associated with hysterisis loops (Figure 1) as created by

incoming cycled stresses (Figure 2).

Figure 3 sbws a block diagram of a system under development at the NASA Lewis

Research Center that is designed to estimate (in real-time) temperature-influenced, cyclic
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damage incurred at the component critical point [2]. For this estimation, temperature from

a monitored location is used with known functional relationships to generate temperature

dependent values for material properties such as Young's Modulus, ultimate tensile stress,

etc.. These properties are then used with the nominal stress of the critical component and a

priori geometry-specitSc stress concentration factor, kt, in a neural network (trained) to map

nomial stress into local stress in accordance with Neuber's Rule (Equation 1) and the

stress/strain equations that govern the appearance of the hysterisis loops (Equations 2 and

3).

The extrema detector monitors nominal stress to determine cycle extrema and "tags" the

local strain values at the extrema for use in a subsequent damage calculation. Also, the cycle

local mean stress is determined. These values, together with the temperature sensitive

material properties, are then used as inputs to a neural network trained to map the values

into cycle damage. This mapping is consistent with Dowling's Local Strain Approach [3].

Accumulated damage is then determined by post-processing the cycle damage by a damage

accumulation law such as Paimgren-Miner, Halford-Manson Double Linear Damage Rule,

etc..

As has already been pointed out, two neural networks are being used with this design. One

neural net is being trained on the mapping of nominal stress into local stress, and the second

is being trained to map hysterisis loop extrema stress and strain values into cycle damage.

We are interested in determining the effectiveness of the RBF [4, 5], backpropagation [6],

and CID4 algorithms in gaining these two networks. The CID4 algorithm is an extension of

the CID3 algorithm[7].
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Figure 1. Hysterisis Loop on the

strew/strain plane.
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Figure 3. Temperature Scmitiv¢ Neural Damage Est_ator.

PREPARATION OF TRAINING DATA

Estimation of local stress

The governing equations behind the mapping of nominal stress into local stress arc as
follows:

1
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Equation (1) is a form of Neuber's Rule that applies when the critical component being

monitored experiences gross elastic deformation only. Under these conditions it effectively

relates to the local stress, Snore. Equations (2) and (3) relate the local stress to the local

strain within the context of a hysterisis loop. Equation (2) governs the increasing

stress/strain portion of the loop and equation (3) governs the decreasing portion. In these

equations, er and err refer to the local strain and local stress reference points, within the

loop. The variable, A, is defined as the ratio of cr'f to (e'f) s, where cr'f is the elastic strainage

versus life coefficient, and e'f is the inelastic strainage versus life coefficient. The variable, s,

is defined as the ratio of b to c, where b is the exponent on cyclic life for elastic strainage

versus life, and c is the exponent on cyclic life for inelastic stralnage versus life.

By individually substituting equations (2) and (3) into equation (1), the following two

equations results:

!
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where, Serf is the product of k, and S_o_. Equation (4) provides a relationship between local

stress, the material-specific parameters A and E, the reference local stress and strain

coordinates of a hysterisis loop, and the nominal stress. This equation holds for the

increasing portion of the stress/strain hysterisis loop whereas Equation (5) holds for the

decreasing portion. Together these equations were used to randomly generate 15,121 input

vectors for the neural network training set, where the form of

[Ei, Ai,_i,o_i,(S_ffi)2,Ea, A4,E_a,a_(Sar,t)2,o] where the subscript i refers to increasing values

and the subscript d refers to decreasing values. If a created vector was for the purpose of

training the neural network on the increasing portion of the hysterisis loop, then all the

values in the vector with a "d" subscript received a zero placeholder value. Conversely, a

zero placeholder value was used for all the "i" subscripted values when the created vector

was designed to train on the decreasing portion of the loop. The training data set consisted

of 1,000 vectors for the half-amplitude portion of the h3_erisis loop, 6,986 vectors for the

increasing portion of the h_erisis loop, and 7,135 vectors for the decreasing portion of the

hysterisis loop. The test data set that was created consisted of 150 vectors, with 50 vectors

for each of the described portions of the hysterisis loop.

The randomly generated values for E, A, and Serf were bounded by material propc:_ties of

MAR-M-246 (Hf-Mod) and by typical service conditions experienced during a Space

Shuttle Main Engine (SSME) mission {MAR-M-246 (Hf-Mod) is the turbine blade material



in theSSME's High PressureFuel Turbine}. For thesegivenconstraints,the rangesfor the
parameters become: 111 < E < 131 GPa, 2.89 < A < 3.20 (dimensionless), and 0 < (S_m

< 15 GPa.

In preparing the training data for the RBF network, 600 vectors were initially selected

randomly from the original 15,121 vectors. The OLS selection method [8] was then

performed to select 80 of the most significant regressors. For training the back'propagation

network, all 15,121 vectors were used after their order has been randomly shuffled.

Strain lif_ _quation

The relationship between strain, t, and the number of cycles to failure, N, is given by the

following equation [1]:

, _ a'r E crm(22'0b + dK2N)C (6)

t is the amplitude of the strain ha the particular stress-strain hysterisis loop. a'f, b, e'f and c

are material constants. Simplifying (6) gives the following:

,,'f-_,_,(2r,Ot,_'g + i

let

(7)

a'f - am _'t b
a- ,E /_ =--g-, X= (22'0c, and s=- (8)C

equation (7) now becomes:

let

,=2+/_x= I (9)

If: $

u = ax (10)

equation (9) now becomes:

_ +P--_v,= i

let a =

which results in the following:

(11)

(12)
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u s + au = 1 (13)

The values for s and a that are of interest to us lie in the range of 0.1 < s < 0.3 and

0.0 < a < 150.0. Due to the fact that a spans a relatively wide range, log(a) was used as an

input to the network instead.

The training data consists of 1000 examples, with values for s and log(a) as desired inputs,

and values for log(u) as the desired output. The test data consists of 500 examples. As this is

a large amount of data, the OLS selection method [8] was used to select 40 of the most

significant regressors to be used by the RBF and CID4 algorithms. For training the

back'propagation network, all 1000 vectors were used after they were shuffled.

NETWORK TRAINING

RBF networks were set up and the output layer weights trained using the mean squared

error reduction method. For the estimation of local stress, the network architecture ranged

from 10 hidden layer nodes to 80 hidden layer nodes. For the strain life equation network,

the number of hidden layer nodes used were between 5 and 40. The networks were

considered as being trained when further training did not reduce the mean squared error

signitacantly.

Backpropagation networks with a varying number of hidden layer nodes were also trained

with the data. For the estimation of local stress, the number of hidden layer nodes were

varied from 10 to 80 nodes. For the strain life equation network, the number of nodes used

ranged rom 1 to 200. All available trz_ning vectors were used to train the backpropagation

networks. The only other preprocessing done on the training data was to shuffle the order of
the vectors.

A third type of network, CID4, was also trained for the strain/life equation network. CID4 is

a modification of CID3 [7], and is designed to produce continuous outputs as opposed to

CID3's discrete outputs. As with CID3, the purpose of the CID4 algorithm is to

self-generate a feed-forward neural network architecture.

RESULTS

Estimation of local stress

RBF networks using between 10 and 80 OLS selected cerat-_-_ _,, ,,.: trained and tested.

Tables 1, 2 and 3 show the results for the RBF networks in the estimation of local stress for

the half-amplitude portion, the increasing portion, and the decreasing portion of the
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hysterisis loop. Each table represents 50 test vectors, and the RMS error, maximum absolute

error, and minimum absolute error for the results in each range are shown.

Backpropagafion networks with a single hidden layer were trained and tested for a

comparison. The same number of hidden layer nodes were used as with RBF, and the

results are tabulated in the same tables.

Table 1: Estimation of local stress, o" (0.0797i0-< ¢ _<0.596300), half-amplitude portion of hysterisis loop.

Nodes in Max' IErrorl ! ..... Min

hid,den layer RBF BI; I RBF

10 008 32 0124 { 0007 ,7
15 0.1117"70 0.085847 I 0.002863

00e4428! 0.124505! 0000089
30 0.091182 0.0£9148 ! 0.000130

40 0..084311 0.082168 ! 0.000025

I Error l

0.000257

0.000224

0.000018

0.000485

i=lMS Error

RBF

0.059O94

0.046960

0.034792

0.020357

BP

ooai 
0.044738

0.033254

0.046933

0,000064 0.023143 0.039963

80 0.08,5218 0.13£2078 i 0.001180 0.000975 0.019786 0.048271

Table 2: Estimation of local stress, dr (0.122858-- < a ___0.668162), increasing portion of hystedsis loop.

Nodes in

hidden layer

10

15

ii

I

i

Max !
RBF

0.275974

0.803522

Error[ ..... i

0.422291

0.082045

Min

0.083754

RBF

0.000179

0.000303

! Error l ..
BP

0.000380

0.000066

0.000825

0.000113

RMS Error
RBF BP

0.000309

O.115555

0.316865

O.155670

0.020396

20 0.739676 .. 0.110819 0.000282 0.3074.92 . , 0.034786

30 0.344249 0.087030 0.000636 0.000265 0.126532 0.025485

40 0.199992 0.065920 0.000209 0.002545 0.072287 0.026008

80 0.023723

Table 3: Estimation of stress, o" (0-0.652853-< a -<0.673437), decreasing portion of hystedsis loop.

Nodes in

hidden layer

Max

RBF
I Error l

BP

10 0.900898 0.723849

15 1.038687 0.910845

1.071518
i

Min

RBF
i

0.007.848
0.009654

}Error)
BP

0.055201

0.000791

RM'S Error

RbF
0.470344

0.507341

BP

Q.373368

o.,376398
20 1.121955 0.707541 0.Q04256. ' 0.068561 0.48649.1 0.411298

30 1.207734 0.700115 0.010072 0.077343 0.461352 0.410519

40 ..... 1.144810 0.826479 0.004247 0.060604 0.447510 0.383865

80 0.878858 0.024079 0.048025 0.387680

Strain life equation

"i"ab1_':4 shows the results of the RBF networks when tested with 500 test vectors. The

desired outputs ranged from -2.4813 to -0.04477. The RMS error column gives the
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root-mean-squared error over all the 500 test vectors, and the minimum errors and the

maximum errors give the absolute values for the best and the worst predictions that were

made. Tables 5 and 6 show the results using backpropagation and CID4, respectively.

Table 4: Statistics for the estimation of log(u) (life), RBF network.

Number of RBF Approximaie .....RMS Error

centers, OLS training time

Minimum Absolute

Error

Maximum Absolute

Error

0.35515

selected

5 0.2 rain ' '0.04472-" 0.00005

6 0.25 rain 0.11370 0.00006 0.30190

10 0.45 min 0.02580
,,, ,,

11 0.5 rain 0.04613

12

0.00006 0.09339

0.0000 8 0..19424

0.000070.6 rain 0.04524 0.22369

20 1.5 rain 0.048272 0.00013 0.10065

40 3.33 rain 0.048152 0.00030 0.0S6"24

Table 5: Statistics for the estimation of log(u) (life), backpropagation.
IL

Number of hidden Approximate RM$ Error Minimum Absolute

layer nodes. Errort .m!ning time
1.3 rain

Maximum Absolute

Error

1 0.04050 0.00012 0.11006

3 5 rain 0.04362 0.00018 0.,11006
5 7 rain 0.03924 0.00034 0.10127

7 12 min, 0.04446 0.00016 0.13405

10 15 rain 0.04199 0.00006 0.13433

20 40 rain 0.04888 0.00013 0.21529

0.04734 0.00004200 0.24045424 hr

Table 6: Statistics for the estimation of log(u) (life), CID4 algorithm.

Number of

training vectors

(OLS selected)
20

4O

Ne ork'
Architecture

Approximate

training time

2:2:2:2:2:1 1 min

2:2:2:2:2:2:2:1 2.17 min

RMS Error Minimum Maximum

Absolute Error Absolute Error

0.16272. 0.0OO58 0.33292

0.14968 0.00023 0.288,79

DISCUSSION

In estimating the local stress, we see from Table 1 and 8.2 that the RBF network gave RMS

errors in the range of 0.019786 - 0.59094 for the half-amplitude hysterisis loop estimations.

This works out to approximately 2 - 6% of the domain of ¢7 (-0.552853 < cr < 0.673437).

'_i_e back-propagation network gave RMS errors in the _Jgc of 0.031943 - 0.048271, which

works out to approximately 3 - 5%. For estimations on the increasing portion of the

hysterisis loop, Table 2 indicates that the errors are approximately 7 - 30% for RBF and 2 -

285



4% for backpropagation. For the decreasing portion of the hysterisis loop, Table 3 indicates

that the errors are approximately 35 - 46% for RBF and 35 - 39% for backpropagation. In

general, the use of a larger number of hidden layer nodes means a a general decrease in

error, though the trend might not be smooth. Varying the number of nodes had more effect

for the RBF network than for the back-propagation network.

The results obtained for the the strain/life function (shown in Tables 4, 5 and 6) suggest that

the approximated function is quite simple. An increase in the number of hidden layer nodes

does not cause a significant reduction in the RMS error. In fact, as the number of nodes in

the hidden layer was increased, there was a slight increase in the RMS error for both the

RBF and the backpropagation networks. There was a minimum error for the RBF network

using 10 hidden layer nodes, and similarly the back-propagation network using 5 hidden layer

nodes had a slightly smaller RMS error than the other confi_a'ations. This could possibly

mean that the larger networks were over-trained, explaining the slight increase in error

when using more than the optimum number of nodes. It is also interesting to note that the

backpropagation network with only one hidden layer node performed well. This again

suggests that the desired mapping function is simple.

For similar sized networks, the time required to train an RBF network was over 20 times

shorter than the time required to train a backpropagation network. However, the time

required to select the 40 centers out of the 1000 training examples (2 hours) should also be

taken into consideration. The CID4 network required slightly more training time than RBF.

The advantage with CID4 is that it self-generates its own architecture. However, the results

obtained had an RMS error much larger than that obtained with RBF or back-propagation.

Although the two system modules discussed in this paper were trained using data obtained

from mathematical calculations, there are two major advantages gained by using neural

networks over numerical methods to come up with the desired estimations. First, a trained

neural network usually gives its output much faster than numerical approximation. Second,

using neural networks provides the flexibility for training the system with empirical data,

should it ever be desired. Third, we have shown how neural networks can be integrated into

a large, complex systems.
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